
1.4 Characterization of an Isotropic Material that is Linearly Elastic 

The responses in the linearly elastic region of a material are characterized with four 

numerical properties which are enough to establish constitutive equations. The four properties 

are: the Shear Modulus (G), elastic modulus (E), Poisson’s ratio () and the coefficient of 

thermal expansion ().  These constitutive equations are associated to Hooke’s law. They are 

experimentally determined and they are used to construct the thermo-elastic constitutive 

equations that are associated with stresses and strains. 

1.4.1 Shear Modulus Determination in One-Dimensional Stress State 

The determination of the shear modulus G experimentally, employs a torsion test 

specimen. Shear modulus is also known as modulus of rigidity. The shear modulus G 

connects shear strain (γ) to the corresponding shear stress () as shown in equation (1.4): 
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From the definition, if γ = γxz, a corresponding  = xz is used for the determination of 

shear modulus G. The shear modulus is basically obtained from a torsion test.  

1.4.2 Elastic Modulus and Poisson’s Ratio in Stress State 

1D normal stress to 1D extensional strain  are associated through two constitutive 

equations which relates to the one-dimensional Hooke’s law: the modulus of elasticity E, also 

known as Young’s modulus and Poisson’s ratio ν.  

The modulus of elasticity (E) links the axial stress (σ) and axial strain (): 
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Poisson’s ratio (ν) is defined as ratio of lateral strain to axial strain: 
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Note: The − sign is introduced for convenience so that ν comes out positive. For structural 

materials ν lies in the range 0.0 ≤ ν < 0.5. For most metals, ν ≈ 0.25–0.35. For concrete and 

ceramics, ν ≈ 0.10. For cork, ν ≈ 0. For rubber, ν ≈ 0.5 to 3 places. A material for which ν = 

0.5 is called incompressible. 



It turns out that the 3 material properties E, ν and G for an elastic isotropic material 

are not independent, but are connected by the relation  shown in equation (1.7(a-c)), which 

means that if two of them are known by measurement, the third one can be obtained from the 

relations. 
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1.4.3 Thermal Strains in a One-Dimensional Stress State 

The supply of thermal energy to a body leads to increase in the body’s temperature 

which increases the average kinetic energy of the body and this generates thermal strain in 

the body. The measure of thermal strain undergone by a body, which takes place as a result of 

a change in temperature, is expressed as: 

  Thermal strain TT       (1.8) 

α is the coefficient of thermal dilatation, measured in 1/˚F or 1/˚C. 

Note:   0 and very small:  1, of the order 10-6 for most structural materials. 

For an isotropic material that is linearly elastic, the total strain the material undergoes 

is expressed as: 

  T
ETAxial        (1.9) 

Example1. The bar AB shown in Figure 1.7 is precluded from extending axially. It has elastic 

modulus E and coefficient of dilatation α > 0. The stress σ is zero when the bar is at the 

reference temperature Tref. Find the axial stress σ developed if the temperature changes to T 

= Tref  + T. 

   
  Figure 1.7: A constrained bar at both edges 



Solution 

Since the bar length cannot change because it is constrained at both edges, the 

combined axial strain must be zero: 

0 T
Exx       (1.10) 

Solving for stress  

   

Since the bar is constrained at both edges, as the temperature rises, that is   0, 

compression will arise which prevents a change in length and this produces a negative axial 

stress. The stress induced in the bar is referred to a thermally induced stress or thermal stress. 

TE        (1.11) 

1.4.4 Application of the knowledge of thermal stress in Design 

The effect of thermal stress on systems like space orbiting vehicles is considered in its 

design. This is because of their exposure to extreme temperature changes as a result of being 

fully exposed to the sun and also being shaded by the earth at night. This knowledge is also 

applied in the creation of expansion joints during the construction of rails, bridges, 

pavements, etc. 

1.5 Hook’s Law in Three-Dimension (3D) 

1.5.1 Relationship between Strain-To- Stress 

Considering the three-dimensional (3D) strain-stress relation of a body subjected to 

external force, with the assumption that the material is elastic and isotropic. Assuming that 

the body is a cube of material subjected to tension stresses as shown in Figures 1.8 (b-d) 

shown. The tension tests are conducted in the x, y and z axes as in b, c and d respectively. 



 
Figure 1.8: A cube subjected to tension on the x, y and z axes 

For Figure 1.8 (b), the strain-stress relation, for the tension test is given as: 
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For Figure 1.8 (c), the strain-stress relation, for the tension test is given as: 
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For Figure 1.8 (c), the strain-stress relation, for the tension test is given as: 
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 The cube is subjected to a combined normal stress xx, yy and zz. The material is 

assumed to be linearly elastic, therefore, the combined strain can be superimposed and this 

gives the following expressions: 

 zzyyxx
zzyyxxd

xx
c

xx
b

xxxx EEEE
 

1)()()(      (1.13a) 

 zzyyxx
zzyyxxd

yy
c

yy
b

yyyy EEEE
 




1)()()(  (1.13b) 

 zzyyxx
zzyyxxd

zz
c

zz
b

zzzz EEEE



 

1)()()(  (1.13c) 

 

Recall that the shear modulus connects the shear strains and stresses and it is expressed as:- 
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When the equations (1.13) and (1.14) are merged or added, the summation gives the 

matrix in equation (1.15):- 
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